Horwitz Equation as Quality Benchmark in ISO/IEC 17025 Testing Laboratory

Carlos Rivera Rosario Rodriguez

Preface

ISO/IEC 17025 accredited Testing Labs:

Keep quality controls of their processes.
Express uncertainty of measurements.

Accreditation Requirements

17025 Lab's Quality Assurance

The core question

Which reference values should be used to validate ISO 5725's results

Acknowledgment

 Authors express gratitude to Mr. Javier Vargas for his allowance to use Oil Reclaiming's control charts to show applications of Horwitz Equation.

Objectives

- **1. Reproducibility** and **Uncertainty** of measurement?
- 2. Scope of testing laboratories **quality control**?
- **3. Horwitz** equation as quality benchmark?
- 4. Uncertainty accreditation policies?

Objectives

- **1. Reproducibility and Uncertainty of** measurement?
- 2. Scope of testing laboratories quality control?
- **3. Horwitz** equation as quality benchmark?
- 4. Uncertainty accreditation policies?

International Vocabulary of Metrology VIM

2.24 reproducibility condition of measurement

...different locations, operators, <u>measuring systems</u>, and replicate measurements on the same or similar objects

2.25 measurement reproducibility

reproducibility <u>measurement precision</u> under <u>reproducibility conditions of measurement</u>

NOTE Relevant statistical terms are given in ISO 5725-1:1994 and ISO 5725-2:1994.

2.21 measurement repeatability

repeatability <u>measurement precision</u> under a set of <u>repeatability conditions of measurement</u>

2.20 repeatability condition of measurement

...same <u>measurement procedure</u>, same operators, same <u>measuring system</u>, same operating conditions and same location, and replicate measurements on the same or similar objects over a short period of time.

Objectives

- **1. Reproducibility and Uncertainty** of measurement?
- 2. Scope of testing laboratories quality control?
- **3. Horwitz** equation as quality benchmark?
- 4. Uncertainty accreditation policies?

Uncertainty

Uncertainty is to measurement...

what **control limits** are to standardized **production processes**. Nevertheless...

there are some **experimental conditions** that should be complied to estimate the **useful value**; **GUM** explains the general criteria.

Objectives

- **1. Reproducibility** and **Uncertainty** of measurement?
- 2. Scope of testing laboratories quality control?
- **3. Horwitz** equation as quality benchmark?
- 4. Uncertainty accreditation policies?

17025's Quality Control

5.9.1. The laboratory shall have quality control procedures for monitoring the **validity of tests**...

5.9.2. Quality control data shall be analyzed and, where they are found to be **outside pre-defined criteria**...

5.9 @ 17025

Measure the measurer!

Objectives

- **1. Reproducibility** and **Uncertainty** of measurement?
- 2. Scope of testing laboratories quality control?
- **3.** Horwitz equation as quality benchmark?
- 4. Uncertainty accreditation policies?

What does HorEq show?

- □ It's an empirical number
- **I** It is a CV
- Comes from on analytical laboratories
- □ Reproducibility of analytical processes
- $\Box \quad \text{CV Horwitz} = \sigma$
 - \square N > 1000 items
 - □ Data distribution were as standard

How is it expressed?

$CV \% = 2C^{-0.15}$

Where C, is the concentration of the **analyte** expressed as a **mass fraction**

How does it look?

Figure 1. Interlaboratory coefficient of variation as a function of concentration.

HORWITZ ET.AL. Assoc. of Anal. Chem. (Vol. 63, No. 4, 1980); p. 1345

When can it be used?

CalibrationsPhysical measurementEmpirical analyte

When can it be used?

Humidity; ash; fiber; **analyte** defined by method where its **concentration depends** on procedure.

Neither for **undefined analytes** such as enzymes, polymers and bimolecules.

$1.2 \ge 10^{-7} \le C \le 0.138$

This **range** was **validated** for mycotoxin in milk, **but**...

•... "Without further experimental confirmation, similar conclusions have been incorporated into several recent EU Directives dealing with other analytes."

> HORWITZ & ALBERT Journal of AOAC International (Vol. 89, No. 4, 2006); p. 1103

•"... as the concentration decreases as the detection limit is approached (at about 10 ppb), the number of false negatives increases."

HORWITZ & ALBERT, (Ibid.) page 1103

$1.2 \ge 10^{-7} \le C \le 0.138$

- Limited scope of validation

- Accepted by EU regulations

100 ppb $\leq C$

- Experimental finding by Horwitz et.al.

What applications have been tried?

•Oil Reclaiming accredited lab (ema), that tested Horwitz Equation as QC benchmark to:

-Monitor performance of gas chromatography -Bias

-Reproducibility of process

-Estimate uncertainty of measurement

Performance of Gas Chromatography

•ASTM D3612 – 02 Analysis of Gases Dissolved in Electrical Insulating Oil

•ASTM D4059 – 00 Analysis of Polychlorinated Biphenyls in Insulating Liquids

Precision values at standards

• ASTM D3612 – 02 $I_n (R)_{95\%} = K_n (R)_{95\%} X C_n$

• ASTM D4059 – 00 $I(r)_{0,95} = k(r) \ge (X_{media})^{0,75}$

Comparision

ASTM	Range	Conc.	(1) CV _R % _(95%)	(2) CV _H % _(95%)	Ratio (1)/(2)
D3612	H ₂ @ 90-710	90	38	16	2
D3613	CO @ 110 - 930	110	79	16	5
D3614	CH ₄ @ 35 - 620	35	72	19	4
D3615	C ₂ H ₅ @ 40 - 400	40	75	18	4
D3616	C ₂ H ₄ @ 30 - 800	30	82	19	4
D3617	C ₂ H ₂ @ 25 - 335	25	64	20	3
D3618	CO ₂ @ 25 - 335	25	76	20	4
D4059	Megabore	5	30	25	1
D4059	Megabore	50	30	18	2
D4059	Megabore	500	17	13	1

$CV_H vs CV_R$

• CV_R control limits, **too open** to allow effective preventive actions.

• Closing CV_R limits is a good practice but;

• CV_H closes limits of reproducibility to a **benchmarked** value

Control Chart

APPLICATIONS

Control chart of BIAS with reproducibility limits

Evaluates BIAS of measurement process using a **characterized** sample essayed; in different days.

Fixed limits on the **Hor Eq** value calculated; **expanded 95%** under standard probability curve.

Presents variance among results; on controls.

Control chart of BIAS with reproducibility limits

ASTM D4059 @ 1260

09/01/05 09/01/16 09/02/09 09/02/11 09/03/05 09/03/18 09/03/20 09/04/02 09/04/14 09/04/21 09/05/19 09/05/28

Control chart of variance with reproducibility limits

Evaluates CV of measurement process using a characterized sample; essayed in different days.

Values come from **standard deviation** of the **last three values** at characterized sample.

Limits were fixed on the value **calculated** from **Horwitz** Equation expanded 95% under standard probability curve.

Sample of control chart of reproducibility

ASTM D4059 @ 1254

Uncertainty of Measurement

- Laboratory **controls** shows **stability**.
- Performance on variance below Horwitz limits and ASTM known reproducibility.
- Laboratory analyzing **Horwitz Equation** as the equation **of uncertainty.**

Objectives

- **1. Reproducibility** and **Uncertainty** of measurement?
- 2. Scope of testing laboratories quality control?
- **3. Horwitz** equation as quality benchmark?
- 4. Uncertainty accreditation policies?

Policies for uncertainty in accreditation

• International Laboratory Accreditation Cooperation.

•International cooperation among various accreditation schemes throughout the world.

Accreditation Bodies

- Mutual Recognition Arrangement
- Similar procedures
- Policies on uncertainty aligned to ILAC's guidelines

ILAC G 17

The level of **uncertainty** that is **acceptable**:

Decided on the basis of <u>fitness for purpose</u>. Occasionally **large uncertainty** may be **acceptable**; sometimes a **small uncertainty** is **required**.

G 17 about standardized methods

•<u>Well-recognized methods</u> specifying limits of the major sources of uncertainty require no special action.

•Laboratories are allowed to <u>quote the typical</u> <u>uncertainty of measurement</u> if they can demonstrate full compliance with the test method.

Objectives 1. Reproducibility and Uncertainty of measurement? Scope of testing laboratories quality control?
Horwitz equation as quality benchmark? 4. Uncertainty asci editation policies?

Conclusions

Benchmarking with **Horwitz allows** scoped laboratories to track the performance of their processes;

Appropriate to express CV at framed essay methods;

Reporting uncertainty of measurement through Horwitz Equation **acceptable** under **ILAC** guidelines.

Thank you!

Carlos Rivera Rosario Rodríguez